Effects of 1, 25-dihydroxyvitamin D3 on expression of TGF-β1, CD68 and MCP-1 in type 2 diabetic nephropathy rat
نویسندگان
چکیده
Objective: This study aims to investigate the role and mechanism of 1, 25-dihydroxyvitamin D3 in type 2 diabetic nephropathy rats. Methods: There were 30 male Sprague-Dawley (SD) rats that were randomly divided into 3 groups: the normal control group (NC group, n=10), the diabetic nephropathy model group (T2DN model group, n=10), and the diabetic nephropathy group treated with 1, 25-dihydroxyvitamin D3 (vD3-T2DN group, n=10). After 15 weeks, the changes of renal tissues morphology, renal function, and 24 h urinary protein quantification were measured. The expressions of Transforming Growth Factor beta 1 (TGF-β1), CD68 and Monocyte Chemoattractant Protein-1 (MCP-1) in renal cortex were also detected by Immunohistochemistry (IHC). Results: The weight of rats were significantly decreased in T2DN model group and vD3-T2DN group than in NC group (P<0.05) at the end of 15th week, while the blood glucose, 24 h urinary protein and triglyceride were significantly increased (P<0.01). The expression of TGF-β1, CD68 and MCP-1 in T2DN model group and vD3-T2DN group were significantly higher than in NC group (P<0.01). Compared with NC group, the triglyceride (P<0.01) and serum creatinine (P<0.05) were significantly higher in T2DN model group. In vD3-T2DN group, the expression of TGF-β1, CD68 and MCP-1, the content of 24 h urinary protein (P<0.01), and triglyceride (P<0.05) were significantly than in T2DN model group. Conclusion: Through repressing the expression of TGF-β1, CD68 and MCP-1, 1, 25-dihydroxyvitamin D3 can inhibit invasion of macrophages to protect kidney of T2DN rats.
منابع مشابه
Recombinant fibromodulin has therapeutic effects on diabetic nephropathy by down-regulating transforming growth factor-β1 in streptozotocin-induced diabetic rat model
Objective(s):Diabetic nephropathy is an important long-term complication of diabetes mellitus which appears to be partially mediated by an increase in secretion of transforming growth factor-β (TGF-β). Fibromodulin, the small leucine-rich proteoglycan, has been proposed to be the potent TGFβ1 modulator. In this study, the therapeutic effects of recombinant adenoviral vectors expressing fibromod...
متن کاملEffect of Cysteine on Transforming Growth Factor β1 as the Main Cause of Renal Disorder in a Rat Model of Diabetic Nephropathy
Background and purpose: Glycation products, oxidative stress, and inflammation contribute to the development of diabetic nephropathy (DN) due to the elevation of transforming growth factor-β1 (TGF-β1). This study aimed at investigating the effect of Cysteine (Cys) on TGF-β in DN rat model. Materials and methods: In this experimental study, 40 male Wistar rats were randomly divided into four g...
متن کاملBlockade of KCa3.1 Ameliorates Renal Fibrosis Through the TGF-β1/Smad Pathway in Diabetic Mice
The Ca(2+)-activated K(+) channel KCa3.1 mediates cellular signaling processes associated with dysfunction of vasculature. However, the role of KCa3.1 in diabetic nephropathy is unknown. We sought to assess whether KCa3.1 mediates the development of renal fibrosis in two animal models of diabetic nephropathy. Wild-type and KCa3.1(-/-) mice, and secondly eNOS(-/-) mice, had diabetes induced with...
متن کاملSesquiterpene lactones and their derivatives inhibit high glucose-induced NF-κB activation and MCP-1 and TGF-β1 expression in rat mesangial cells.
Diabetic nephropathy (DN) is one of the most common and serious chronic complications of diabetes mellitus, however, no efficient clinical drugs exist for the treatment of DN. We selected and synthesized several sesquiterpene lactones (SLs), and then used the MTT assay to detect rat mesangial cells (MCs) proliferation, ELISA to measure the expression level of monocyte chemoattractant protein-1 ...
متن کاملInhibition of (pro)renin Receptor Contributes to Renoprotective Effects of Angiotensin II Type 1 Receptor Blockade in Diabetic Nephropathy
Aims: Renal renin-angiotensin system (RAS) plays a pivotal role in the development of diabetic nephropathy (DN). Angiotensin II (Ang II) type 1 receptor (AT1R) blockade elevates (pro)renin, which may bind to (pro)renin receptor (PRR) and exert receptor-mediated, angiotensin-independent profibrotic effects. We therefore investigated whether PRR activation leads to the limited anti-fibrotic effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017